

TRIGONOMETRY

TABLE FOR SOLUTION OF RIGHT TRIANGLES

SINE RULE - SOH

COSINE RULE - CAH
COSINE = ADJACENT
HYPOTENUSE

TANGENT RULE - TOA

TANGENT = OPPOSITE
ADJACENT

KNOWN VALUES	UNKNOWN SIDE a	UNKNOWN SIDE b	UNKNOWN SIDE c	UNKNOWN ANGLE A	UNKNOWN ANGLE B
a & b			$\sqrt{a^2 + b^2} = c$	$\frac{b}{a}$ = inv tan A	$\frac{a}{b}$ = inv tan B
b & c	$\sqrt{c^2 - b^2} = a$			$\frac{b}{c}$ = inv sin A	$\frac{b}{c}$ = inv cos B
a & c		$\sqrt{a^2 - c^2} = b$		$\frac{a}{c}$ = inv cos A	$\frac{a}{c}$ = inv sin B
a & A		a (tan A) = b	$\frac{a}{\cos A} = c$		90° - A = B
a & B		a (tan B) = b	$\frac{a}{\sin B} = c$	90° - B = A	
b&A	b (tan A) = a		$\frac{b}{\sin A} = c$		90° - A = B
b&B	b (tan B) = a		$\frac{b}{\cos B} = c$	90° - B = A	
c & A	c (cos A) = a	c (sin A) = b			90° - A = B
c & B	c (sin B) = a	c (cos B) = b		90° - B = A	

CALCULATION NOTES:

There are 4 easy ways to calculate the trigonometric ratios of sine, cosine and tangent and their corresponding inverses arcsine, arccosine and arctangent.

- 1. Use lookup tables such as those found in "Machinery's Handbook".
- 2. Use calculators in Degrees mode where the SIN of 30° is 0.5 and the INV (or 2ND key) of a SIN value of 0.5 is 30°.
- 3. Use online calculators found on the Internet.
- 4. Use spreadsheet programs such as Microsoft Excel ® formulas and their inverses (30° is used for example) below:

=SIN (RADIANS(30)) =COS (RADIANS(30)) =TAN (RADIANS(30)) =DEGREES(ASIN(0.5)) =DEGREES(ACOS(0.866025404)) =DEGREES(ATAN(0.5773503))

rv's Handbook is published by Industrial Pr

* The area of a right triangle is easily calculated when thought of as half a parallelogram.

Machinery's Handbook is published by Industrial Press Excel is a registered trademark of Microsoft

 $TAN\theta =$

2010 BY MARK S. SCHWENDAU